REVIEWS OF TOPICAL PROBLEMS: Hamiltonian formalism for nonlinear waves
Abstract
The Hamiltonian description of hydrodynamic type systems in application to plasmas, hydrodynamics, and magnetohydrodynamics is reviewed with emphasis on the problem of introducing canonical variables. The relation to other Hamiltonian approaches, in particular naturalvariable Poisson brackets, is pointed out. It is shown that the degeneracy of noncanonical Poisson brackets relates to a special type of symmetry, the relabeling transformations of fluidparticle Lagrangian markers, from which all known vorticity conservation theorems, such as Ertel's, Cauchy's, Kelvin's, as well as vorticity frozenness and the topological Hopf invariant, are derived. The application of canonical variables to collisionless plasma kinetics is described. The Hamiltonian structure of Benney's equations and of the Rossby wave equation is discussed. DaveyStewartson's equation is given the Hamiltonian form. A general method for treating weakly nonlinear waves is presented based on classical perturbation theory and the Hamiltonian reduction technique.
 Publication:

Physics Uspekhi
 Pub Date:
 November 1997
 DOI:
 10.1070/PU1997v040n11ABEH000304
 Bibcode:
 1997PhyU...40.1087Z