Photoluminescence studies of epitaxial Si 1- xGe x and Si 1- x-yGe xC y layers on Si formed by ion beam synthesis
Abstract
Low temperature (2 K) photoluminescence (PL) properties of epitaxial Si 1- xGe x and Si 1- x-yGe xC y layers on Si ( x = 0.13 and y = 0.014 at peak concentration) formed by ion beam synthesis (IBS) have been investigated. Samples were prepared by a high-dose Ge with/without C ion implantation (I 2) at room temperature and by subsequent three different crystallization techniques: (i) furnace annealing (FA) process up to 840°C, (ii) ion beam-induced epitaxial crystallization (IBIEC) process with 400 keV Ge or Ar ions at 300-350°C, and (iii) IBIEC process followed by FA process up to 640°C (IBIEC + FA). Although FA-grown Si 1- x-yGe xC y samples showed G-line (C sSi iC s complex) emission at 0.969 eV, IBIEC-grown samples presented a sharp I 1 non-phonon emission at 1.0193 eV. This indicates that C atoms agglomeration is dominant for FA-grown samples, while a creation of trigonal tetravacancy cluster is dominant for IBIEC-grown samples. On the other hand, (IBIEC with Ge ions + FA)-grown Si 1- x-yGe xC y samples showed neither G-line nor I 1-related emissions, which indicates that good crystalline Si 1- x-yGe xC y layers without C agglomeration were formed by this process. In contrast, (IBIEC with Ar ions + FA)-grown samples exhibited novel successive PL vibronic sidebands at 0.98-1.03 eV. From their excitation power dependence measurements, they were found to be associated with exciton bound to defects levels created by Ar + bombardment.
- Publication:
-
Nuclear Instruments and Methods in Physics Research B
- Pub Date:
- January 1997
- DOI:
- Bibcode:
- 1997NIMPB.121..146K