Compact Torus Injection Experiments on the H.I.T. teststand and the JFT-2M tokamak
Abstract
A spheromak-type compact torus (CT) acceleration and injection experiment has been carried out using the Himeji Institute of Technology Compact Torus Injector (HIT-CTI). We investigate the possibility of refueling, density control, current drive, and edge electric field control of tokamak plasmas by means of CT injection. The HIT-CTI produces a CT with a speed of 200 km/s and a density of 1× 10^21m-3. We have constructed new electrodes and power supplies, and will install the HIT-CTI on the JFT-2M tokamak at JAERI in Autumn 1997. The outer electrode serves as a common ground for both the formation bank (144μF, 20kV) and the acceleration bank (92.4μF, 40kV). If the external toroidal field of the tokamak is applied across the CT acceleration region, the CT kinetic energy might decrease during penetration into the field lines joining the inner and outer electrode. This could result in the CT not being able to reach the core of the tokamak plasma. Determining the optimum position of the inner electrode is one of the near term goals of this research. We will present magnetic probe, He-Ne interferometer and fast framing camera data from experiments at H.I.T., where a CT was accelerated into a transverse field. We will also present initial results from the operation of the HIT-CTI on the JFT-2M tokamak.
- Publication:
-
APS Division of Plasma Physics Meeting Abstracts
- Pub Date:
- November 1997
- Bibcode:
- 1997APS..DPPkWP205F