Random vectors in the isotropic position
Abstract
Let $y$ be a random vector in \rn, satisfying $$ \Bbb E \, \tens{y} = id. $$ Let $M$ be a natural number and let $y_1 \etc y_M$ be independent copies of $y$. We prove that for some absolute constant $C$ $$ \enor{\frac{1}{M} \sum_i \tens{y_i} - id} \le C \cdot \frac{\sqrt{\log M}}{\sqrt{M}} \cdot \left ( \enor{y}^{\log M} \right )^{1/ \log M}, $$ provided that the last expression is smaller than 1. We apply this estimate to obtain a new proof of a result of Bourgain concerning the number of random points needed to bring a convex body into a nearly isotropic position.
- Publication:
-
arXiv Mathematics e-prints
- Pub Date:
- August 1996
- DOI:
- 10.48550/arXiv.math/9608208
- arXiv:
- arXiv:math/9608208
- Bibcode:
- 1996math......8208R
- Keywords:
-
- Mathematics - Metric Geometry;
- Mathematics - Functional Analysis