Worldline path integrals for fermions with scalar, pseudoscalar and vector couplings
Abstract
A systematic derivation is given of the worldline path integrals for the effective action of a multiplet of Dirac fermions interacting with general matrixvalued classical background scalar, pseudoscalar, and vector gauge fields. The first path integral involves worldline fermions with antiperiodic boundary conditions on the worldline loop and generates the real part of the oneloop (Euclidean) effective action. The second path integral involves worldline fermions with periodic boundary conditions and generates the imaginary part of the (Euclidean) effective action, i.e. the phase of the fermion functional determinant. Here we also introduce a new regularization for the phase of functional determinants resembling a heatkernel regularization. Compared to the known special cases, our worldline Lagrangians have a number of new interaction terms; the validity of some of these terms is checked in perturbation theory. In particular, we obtain the leading order contribution (in the heavy mass expansion) to the WessZuminoWitten term, which generates the chiral anomaly.
 Publication:

Nuclear Physics B
 Pub Date:
 February 1996
 DOI:
 10.1016/05503213(96)001253
 arXiv:
 arXiv:hepth/9508131
 Bibcode:
 1996NuPhB.467..272D
 Keywords:

 High Energy Physics  Theory;
 High Energy Physics  Phenomenology
 EPrint:
 23 pages, Plain Tex, no macros needed, some minor changes and some references added