The Far Infrared Vibration-Rotation Spectrum of the Ammonia Dimer.
Abstract
The ammonia dimer has been shown to exhibit unusual weak bonding properties relative to those of the other prototypical second row systems, the hydrogen fluoride dimer and the water dimer. The ultimate goal of the work initiated in this dissertation is to determine a complete intermolecular potential energy surface for the ammonia dimer. It is first necessary to observe its far infrared vibration-rotation-tunneling (VRT) spectrum and to develop a group theoretical model that explains this spectrum in terms of the internal dynamics of the ammonia dimer. These first steps are the subject of this dissertation. First, the current understanding of the ammonia dimer system is reviewed. Group theoretical descriptions of the nature of the ammonia dimer VRT states are explained in detail. An overview of the experimental and theoretical studies of the ammonia dimer made during the last decade is presented. Second, progress on the analysis of the microwave and far infrared spectrum of (ND_3)_2 below 13 cm^{-1} is reported. These spectra directly measure the 'donor -acceptor' interchange splittings in (ND_3) _2, and determine some of the monomer umbrella inversion tunneling splittings. Third, new 80-90 cm^{-1} far infrared spectra of (NH_3)_2 are presented and a preliminary analysis is proposed. Most of the new excited VRT states have been assigned as tunneling sublevels of an out-of-plane intermolecular vibration.
- Publication:
-
Ph.D. Thesis
- Pub Date:
- November 1995
- Bibcode:
- 1995PhDT.......145L
- Keywords:
-
- Chemistry: Physical; Physics: Molecular