Nitrogen Isotopic Disequilibrium in the Cape York III A Iron
Abstract
Cape York is a medium octahedrite of the class III A, which is presumed to have been formed by fractional crystallization of an asteroidal metal core (1). Within the Cape York kamacite-taenite matrix abundant troilite nodules are found. From their elongated form it has been suggested that immiscible S-rich liquids were trapped under the influence of a gravity field. Some of these nodules contain chromite grains, preferentially at the bottom of the troilite/metal boundary (2,3). Minor phases within the troilite are sulfides, phosphates, silica and copper. Carlsbergite (CrN) is exclusively found within the metal matrix. The nitrogen isotopic composition in metal of Cape York was analyzed by several workers and found to be enriched in 14N (delta^(15)N -32.3 to -94.8 per mil) with concentrations varying from 7 to 37 ppm. The large range of N concentrations may reflect artifacts due to experimental difficulties (4), but also might be attributed to varying amounts of CrN within the metal separates. The N in troilite (delta^(15)N -3.8+/-1.2 per mil) was found to be heavier than that observed in metal (4). In one temperature step (1100 degrees C) during stepwise release, nitrogen with a delta^(15)N of -32 per mil was measured, indicating inclusions of an isotopically distinct phase in troilite. In order to trace the nature of the inclusion we determined the N isotopic composition first in a small pilot sample and then in a larger (23.93mg) chromite separate. The latter was stepwise heated at temperatures between 400 and 1000 degrees C, and the release of sample N started at 700 degrees C (delta^(15)N -9.6+/-2.4 per mil). The lightest N component was measured in the 1000 degrees C step with delta^(15)N -56.4+/-13.0 per mil and the average N composition is obtained as delta^(15)N -25.8 per mil. This result supports earlier evidence that nitrogen is isotopically not equilibrated between chromite, surrounding troilite and metal matrix. Possible processes which could lead to a disequilibrium as observed in Cape York include (a) survival of primary isotopic heterogeneities; (b) N loss during secondary processes, e.g., metamorphic heating and shock deformation: (a) Graphite grains within metal of the Acapulco meteorite were identified as carrier of isotopically distinct N and C components and were interpreted as surviving (possibly presolar) grains unaffected by the igneous alteration of the bulk meteorite (5). Obviously such grains exchanged N isotopically with metal and chromite, but not with sulfides and silicates, as these do not carry the light N of metal and chromite (6). The mechanism of this exchange is, however, unclear. No graphite has been observed so far in Cape York. Yet, isotopic heterogeneities in the precursor material of Cape York can not be excluded. During melting of the parent asteroid one would expect homogenization of the nitrogen isotopes. Since chromite and metal crystallize at high temperatures, a probable exchange of N between the S-rich melt and a distinct N reservoir at lower temperature might explain the disequilibrium. (b) Troilite nodules in Cape York indicate a small degree of shock deformation (2,3,5). One might argue that some N was lost and the residue fractionated during this event. However, 107Ag/109Ag ratios from metal and troilite correlate with Pd/Ag ratios, which is not the case in severely shocked magmatic irons (7). In addition, similar isotopic N fractionations are found in the "magmatic" Acapulco meteorite, which shows no indication of shock deformation. Therefore, secondary loss of N preferentially from troilite can be excluded. References: [1] Haak H. and Scott E. (1993) GCA, 57, 3457-3472. [2] Buchwald V. (1975) Handbook of Iron Meteorites, Vols. 1_3, Univ. of California and Arizona State Univ., Berkeley. [3] Kracher A et al. (1977) Geochem. J., 11, 207-217. [4] Murty S. and Marti K. (1994) GCA, 58, 1841-1848. [5] El Goresy A. et al. (1995) Nature, 373, 496-499. [6] Kim Y. et al. (1992) LPS XXIII, 691-692. [7] Teshima J. et al. (1986) GCA, 50, 2073-2087.
- Publication:
-
Meteoritics
- Pub Date:
- September 1995
- Bibcode:
- 1995Metic..30R.606Z
- Keywords:
-
- Chromite;
- Cpae York;
- Disequilibrium;
- Metal;
- Nitrogen isotopic composition;
- Troilite