The world as a hologram
Abstract
According to 't Hooft the combination of quantum mechanics and gravity requires the threedimensional world to be an image of data that can be stored on a twodimensional projection much like a holographic image. The twodimensional description only requires one discrete degree of freedom per Planck area and yet it is rich enough to describe all threedimensional phenomena. After outlining 't Hooft's proposal we give a preliminary informal description of how it may be implemented. One finds a basic requirement that particles must grow in size as their momenta are increased far above the Planck scale. The consequences for highenergy particle collisions are described. The phenomenon of particle growth with momentum was previously discussed in the context of string theory and was related to information spreading near black hole horizons. The considerations of this paper indicate that the effect is much more rapid at all but the earliest times. In fact the rate of spreading is found to saturate the bound from causality. Finally we consider string theory as a possible realization of 't Hooft's idea. The light front lattice string model of Klebanov and Susskind is reviewed and its similarities with the holographic theory are demonstrated. The agreement between the two requires unproven but plausible assumptions about the nonperturbative behavior of string theory. Very similar ideas to those in this paper have long been held by Charles Thorn.
 Publication:

Journal of Mathematical Physics
 Pub Date:
 November 1995
 DOI:
 10.1063/1.531249
 arXiv:
 arXiv:hepth/9409089
 Bibcode:
 1995JMP....36.6377S
 Keywords:

 High Energy Physics  Theory
 EPrint:
 SUITP9433, phyzzx, 33 pages and 5 figures (Some typos fixed and one reference added.)