Fluid and Cell Transport Through a Microfabricated Flow Chamber.
Abstract
We use silicon processing techniques to construct microfabricated fluid flow chambers. Custom designed silicon wafers with feature sizes of 1-10 μm and etch depths from 0.5-5 μm are anodically bonded to Pyrex glass to create a hermetically sealed chamber. A pressure gradient is placed across the chamber to induce bulk fluid flow. Properties of fluid flow and red blood cells are recorded using video microscopy. The human red blood cell is ideal for studying cellular membranes. It is an 8 μm diameter biconcave disc containing a membrane and associated cytoskeleton which surrounds a thick solution of hemoglobin. The material properties of individual red blood cells have been extensively studied in the past using micropipettes. However, we can get statistics on hundreds of red blood cells by fabricating an array of narrow channels 4 mu m x 4 μm in cross-section (the diameter of the smallest capillaries in the human body) and 13 μm long. These narrow channels are followed by an open space. This geometry forces red cells to repeatedly fold and unfold. Using these arrays, we show that the shear modulus of the membrane does not have a unique value, but has a distribution that ranges from 3-12 times 10 ^{-6} N/m. The surprisingly wide distribution is not due to cell size or cell age. It does seem to be correlated with intracellular Ca^ {2+}<=vels, leading us to believe that cell rigidity is controlled by some active process. We also report observations on red blood cells changing their rigidity by factors of fifty over tens of seconds. These microfabricated flow chambers are ideal for studying fluid flow through porous media. We construct custom designed two-dimensional environments with micron size features. These environments can be described by simple analytical theories which also attempt to describe flow through rock. For example, we image viscous imbibition of water into a percolation grid with 5 mu m edges in real time, and measure the permeability as a function of concentration for a simple rectangular array geometry.
- Publication:
-
Ph.D. Thesis
- Pub Date:
- 1994
- Bibcode:
- 1994PhDT.......184B
- Keywords:
-
- Physics: Fluid and Plasma; Biophysics: General; Engineering: Biomedical