Principles and the Development of Physical Theory: Case Studies
Abstract
Three separate articles make up the chapters of this dissertation. They were written with different aims and audiences in mind, but each deals in some way with one or more "principles" that have been invoked in argumentation and explanation in the physical sciences. The principles of concern are propositions which have an "aesthetic" or "foundational" or "philosophical" character and which are (or have been) generally believed to be widely applicable or particularly powerful--for example, the Principle of Plenitude, the Principle of Mathematical Beauty, Occam's Razor, the Cosmological Principle, and the Copernican Principle. Chapter 1 provides an overview of the nature and uses of principles in scientific reasoning and examines in some detail the use of the Principle of Plenitude in the introduction of "tachyons" (faster-than-light particles) into theoretical physics during the 1960s. Chapter 2 is a short biography of P. A. M. Dirac (1902-1984), one of the founders of quantum mechanics, who believed that the Principle of Mathematical Beauty should serve as physicists' guide to truth. Chapter 3 traces the history of the idea of faster-than-light particles in physics since the late 1800s; this idea matured with the rise of the subfield of tachyon physics in the 1960s, and (as mentioned above) physicists appealed to the Principle of Plenitude to argue for the existence of the particles, which are still only hypothetical. According to the thesis developed in these chapters, the epistemological status of principles has evolved over the history of science. While they were once hallowed as a priori truths, in modern science they have increasingly been employed critically, in light of the results of scientific inquiry. That is, science has moved toward making principles testable, subject to rejection or revision, on a par with other scientific propositions.
- Publication:
-
Ph.D. Thesis
- Pub Date:
- 1994
- Bibcode:
- 1994PhDT........86H
- Keywords:
-
- QUANTUM MECHANICS;
- ANTIPARTICLES;
- COSMOLOGY;
- History of Science; Philosophy; Physics: General