Syntheses, Structures and Thermal Studies of Fluorinated and Non-Fluorinated Homo and Heterometallic Alkoxides
Abstract
The following studies probe the effects of ligand structure and modification on the conversion of metal species to solid-state products. 1. The synthesis, characterization, thermal decomposition, and full hydrolysis of rm Cu^{I }_2 Zr_2(O^{i}Pr) _{10} (1), Cu^ {rm I}_4Zr_4 O(O^{rm i}Pr) _{18} (2), and Cu ^{rm II}_4Zr _4O_3(O^ {rm i}Pr)_{18 } (3) are reported. The structure of 1 contains a Zr_2(O^{rm i}Pr)_9^- face -sharing bioctahedron bound to a Cu^{ rm I}_2(mu_2-OR) ^+ fragment via two mu _2 -alkoxides. The structure for 2 contains two (C_2(mu_2-OR) _2Zr_2(mu_2 -OR)_3(OR)_4] ^{1-} fragments connected via a pseudo-tetrahedral mu_4-O ^{2-} ligand. The structure of 3 contains a planar Cu_4O(O ^{rm i}Pr)_2 ^{4+} fragment capped by two Zr _2O(O^{rm i}Pr)_8^{2-} face-sharing bioctahedral units. The central oxo of the copper fragment is square-planar. TGA studies of ClCuZr_2(O^{ rm i}Pr)_9, 1, 2, and 3 show that internal redox occurs, producing copper metal, acetone, and isopropanol. The final products contain an increasing amount of zirconia with increasing number of oxo ligands in the precursor species. Full hydrolysis of 1 and 3, followed by thermolysis, produces Cu ^0, Cu_2O, and CuO with zirconia, depending on thermolysis conditions. 2. The compounds Na(HFIP) (HFIP = OCH(CF _3)_2), 1a, Na(TFTB) (TFTB = OC(CH _3)_2(CF_3 )), 1b, Na(HFTB) (HFTB = OC(CH_3 )(CF_3)_2), 1c, Na(PFTB) (PFTB = OC(CF_3)_3), 1d, Zr(HFIP)_4, 2a, Zr(TFTB) _4, 2b, Zr(HFTB)_4, 2c, Zr(PFTB)_4, 2d, Na_2 Zr(OR_{rm f})_6 (C_6H_6)_ {rm n} (3a when n = 1 and 3b when n = 2), and Tl_2Zr(OR_ {rm f})_6, 4, have been synthesized and characterized by mass spectrometry, multinuclear NMR and (for 1a, 2c, 3a, 3b and 4) X-ray diffraction structure determinations. Intramolecular bonding interactions between organofluorines and sodium or thallium are seen in all structures and are supported by Tl/F coupling in ^{205}Tl and ^{19 }F NMR spectra. Chemical vapor depositions of 1a-d, 2b-d and 3 produce metal fluoride films. Mechanistic information for metal-flouride formation was obtained from characterization of deposition volatiles and mass spectral analysis of the precursor species. Metal/organofluorine interactions appear to provide a facile reaction channel for rupture of the strong C-F bond, lowering deposition temperatures.
- Publication:
-
Ph.D. Thesis
- Pub Date:
- 1994
- Bibcode:
- 1994PhDT........71S
- Keywords:
-
- COPPER ZIRCONIUM OXIDES;
- Chemistry: Inorganic; Engineering: Materials Science; Physics: Condensed Matter