What We Have Learned about Mars from SNC Meteorites
Abstract
The SNC meteorites are thought to be igneous martian rocks, based on their young crystallization ages and a close match between the composition of gases implanted in them during shock and the atmosphere of Mars. A related meteorite, ALH84001, may be older and thus may represent ancient martian crust. These petrologically diverse basalts and ultramafic rocks are mostly cumulates, but their parent magmas share geochemical and radiogenic isotopic characteristics that suggest they may have formed by remelting the same mantle source region at different times. Information and inferences about martian geology drawn from these samples include the following: Planetary differentiation occured early at approximately 4.5 GA, probably concurrently with accretion. The martian mantle contains different abundances of moderately volatile and siderophile elements and is more Fe-rich than that of the Earth, which has implications for its mineralogy, density, and origin. The estimated core composition has a S abundance near the threshold value for inner core solidification. The former presence of a core dynamo may be suggested by remanent magnetization in Shergottite-Nakhlite-Chassignite (SNC) meteorites, although these rocks may have been magnetized during shock. The mineralogy of martian surface units, inferred from reflectance spectra, matches that of basaltic shergottites, but SNC lithologies thought to have crystallized in the subsurface are not presently recognized. The rheological properties of martian magmas are more accurately derived form these metorites than from observations of martian flow morphology, although the sampled range of magma compositions islimited. Estimates of planetary water abundance and the amount of outgassed water based on these meteorites are contridictory but overlap estimates based on geological observations and atmospheric measurements. Stable isotope measurements indicate that the martian hydrosphere experienced only limited exchange with the lithosphere, but it is in isotopic equilibrium with the atmosphere and has been since 1.3 Ga. The isotopically heavy atmosphere/hydrosphere composition deduced from these rocks reflects a loss process more severe than current atmospheric evolution models, and the occurence of carbonates in SNC meteorites suggest that they, rather than scapolite or hydrous carbonates, are the major crustal sink for CO2. Weathering products in SNC meteorites support the idea of limited alteration of the lithosphere by small volumes of saline, CO2-bearing water. Atmospheric composition and evolution are further constrained by noble gases in these meteorites, although Xe and Kr isotopes suggest different origins for the atmosphere. Planetary ejection of these rocks has promoted an advance in the understanding of impact physics, which has been accomplished by a model involving spallation during large cratering events. Ejection of all the SNC meteorites (except ALH84001) in one or two events may provide a plausible solution to most constraints imposed by chronology, geochemistry, and cosmic ray exposure, although problems remain with this scenario; ALH84001 may represent older martian crust sampled during a separate impact.
- Publication:
-
Meteoritics
- Pub Date:
- November 1994
- DOI:
- Bibcode:
- 1994Metic..29..757M
- Keywords:
-
- Chassignites;
- Geochemistry;
- Mars Surface;
- Meteoritic Composition;
- Nakhlites;
- Shergottites;
- Carbon Dioxide Concentration;
- Chronology;
- Crystal Lattices;
- Igneous Rocks;
- Mars (Planet);
- Mars Atmosphere;
- Petrology;
- Lunar and Planetary Exploration;
- Broadly Focused Reviews