Research Toward Laser Spectroscopy of Trapped Atomic Hydrogen
Abstract
An apparatus has been designed and constructed to perform laser spectroscopy on magnetically trapped atomic hydrogen. Earlier experiments demonstrated the feasibility of magnetic trapping and evaporative cooling of atomic hydrogen. The current apparatus has been designed to explore two areas of research: high resolution laser spectroscopy of hydrogen, and the possible production and detection of Bose condensation. The 1S{-}2S two-photon transition was chosen for study because of its extremely narrow natural linewidth. The techniques developed here should ultimately permit laser spectroscopy with a resolution approaching 1 part in 10^{15 } and should be well suited to the detection of Bose condensation. The apparatus consists of two subsystems: a cryogenic apparatus for magnetically trapping hydrogen, and a laser source for producing the ultraviolet light necessary to excite the 1S{-}2S transition. The two subsystems have independently demonstrated exceptional performance. The magnetic trap has produced gas densities approaching 10^{14} cm ^{-3} at temperatures as low as 100 muK, the closest approach to Bose condensation achieved to date with atomic hydrogen. The continuous wave laser source has produced 20 mW of 243 nm light with an estimated spectral linewidth of 2 kHz. The optimum experimental conditions for excitation and detection of the 1S{-}2S transition in trapped hydrogen have been identified. Initial trials with the apparatus revealed an unexpected operational problem, however several strategies have been proposed that should allow observation of the transition. The expected features of the 1S{-}2S transition lineshape with magnetically trapped hydrogen have been calculated. The possibilities for future research with laser spectroscopy of magnetically trapped hydrogen are described, and a promising strategy for the detection of Bose condensation is proposed. (Copies available exclusively from MIT Libraries, Rm. 14-0551 Cambridge, MA 02139-4307. Ph. 617 -253-5668; Fax 617-253-1690.).
- Publication:
-
Ph.D. Thesis
- Pub Date:
- 1993
- Bibcode:
- 1993PhDT.......188S
- Keywords:
-
- HYDROGEN;
- Physics: Atomic