Electrochemical and Numerical Studies of Surface, Grain-Boundary and Bulk Copper Diffusion Into Gold
Abstract
Surface, grain-boundary, and bulk chemical diffusivities of copper into gold were measured by chronoamperometry -potentiometry applied to Cu|CuCl |Au solid state galvanic cells at 300-400^circC. The cells were constructed using a novel vapor deposition technique which is described. The automated data acquisition techniques utilizing unique hardware and custom designed software are also presented. Chronoamperometry and a two electrode limited potential cyclic voltammetry technique were comparatively used to determine cell capacitance and resistance. Both gave similar RC values at lower temperatures but diverged from each other at higher temperatures. Electron hole conductivity of CuCl could not be determined from intercept values in the chronoamperometry Cottrell analysis. The partial molar enthalpy and entropy of mixing copper into gold were determined from Emf vs temperature vs composition measurements of Cu|CuCl |Au-Cu alloy cells. The results support the regular solution model of mixing with interaction energy parameter {bf{cal Q}} = 10kJ. Diffusion coefficients were calculated from the chronoamperometry-potentiometry time/flux/concentration data in two ways: via the Cottrell equation, for an average diffusion coefficient; and via a simplex and finite difference program for the simultaneous determination of surface, grain-boundary, and bulk diffusion coefficients. This program was run on a MASPAR MP-2 massively parallel computer. The surface and grain-boundary diffusivities were numerically determinable in single and polycrystalline cathodes at short diffusion times. Bulk diffusivity was determinable at short and long diffusion times and agreed with previous data. Surface diffusivity was two orders of magnitude larger than the bulk with lower activation energy. Grain -boundary diffusivity was one order of magnitude larger than the bulk with similar activation energy. The Cottrell equation was only valid at very long diffusion times due to the transient interface concentration boundary conditions.
- Publication:
-
Ph.D. Thesis
- Pub Date:
- 1993
- Bibcode:
- 1993PhDT.......184M
- Keywords:
-
- GRAIN BOUNDARY;
- Engineering: Materials Science; Chemistry: Physical; Physics: Condensed Matter