Ionization Phenomena in Ion-Atom Collisions
Abstract
Two many-electron ion-atom collision systems are used to investigate atomic and molecular structure and collisional interactions. Electrons emitted from MeV/u C^{3+} projectile target -atom collisions were measured with a high-resolution position -sensitive electron spectrometer at Oak Ridge National Laboratory. The electrons are predominantly ionized by direct projectile -target interactions or autoionizing (AI) from doubly excited AI levels of the ion which were excited in the collision. The energy dependence of directly scattered target electrons, binary-encounter electrons (BEE), is investigated and compared with theory. AI levels of the projectile 1s to nl single electron excited series, (1s2snl) n = 2,3,4,....infty, including the series limit are identified uniquely using energy level calculations. Original Auger yield calculations using a code by Cowan were used to discover a 1/{n^3} scaling in intensities of Auger peaks in the aforementioned series. This is explained using scattering theory. A nonstatistical population of the terms in the (1s2s2l) configuration was identified and investigated as a function of the beam energy and for four different target atoms. Two electron excited configurations are identified and investigated. The angular distribution of a correlated transfer and excitation AI state is measured and compared to theory. The final scattered charge state distributions of Kr^ {n+}, n = 1, 2, 3, 4, 5, projectiles are measured following collisions with Kr targets in the Van de Graaff Laboratory here at The University of Connecticut. Average scattered charge states as high as 12 are observed. It appears that these electrons are ionized during the lifetime of the quasimolecular state but a complete picture of the ionization mechanism(s) is not known. Calculations using a statistical model of ionization, modified in several ways, are compared with the experimental results to see if it is possible to isolate whether or not the electrons originate from the quasimolecule or from the separated ion. Low energy electron spectra of the ionized electrons were measured to see if Auger electron peaks could be resolved.
- Publication:
-
Ph.D. Thesis
- Pub Date:
- 1993
- Bibcode:
- 1993PhDT.......135D
- Keywords:
-
- KRYPTON TARGETS;
- Physics: Atomic