Sensitivity of Stretch-Activated K+ Channels Changes during Cell-Cleavage Cycle and may be Regulated by cAMP-Dependent Protein Kinase
Abstract
The properties of stretch-activated K+ channels in the membrane of loach (Misgurnus fossilis) embryos were studied using the patch-clamp technique. It was found that in the early stages of embryogenesis (2-256 cells) the stretch sensitivity of stretch-activated (SA) channels changes dramatically during the cell cleavage cycle. At the beginning of interphase the stretch sensitivity of SA channels and the probability of being in the open state (P0) were minimal, whereas at prometaphase they were increased 10-100-fold. Application of ATP to the cytoplasmic surface of excised inside-out patches induced a reversible increase in resting P0 and of stretch sensitivity of the SA channels in 50% of the patches, but the non-hydrolysable analogue of ATP, 5'-adenylylimidodiphosphate (AMP-PNP), was not effective. Phosphatase inhibitors (orthovanadate and para-nitrophenyl phosphate) prolonged the effect of ATP. Combined application of ATP, cAMP and cAMP-dependent protein kinase (PK) induced a reversible increase in the SA channel activity in 70% of those excised patches which did not respond to ATP. Inhibitors of PK prevented its activating effect. Dibutyryl-cAMP (dB cAMP) transiently increased activity of SA channels in intact cells. These results suggest that activity of SA channels may be regulated through cAMP-dependent phosphorylation and thus provide the basis for explanation of stretch sensitivity modulation during the cell cycle.
- Publication:
-
Proceedings of the Royal Society of London Series B
- Pub Date:
- September 1991
- Bibcode:
- 1991RSPSB.245..159M