The Impact of Climate upon Variation in Air Pollution Using a Synoptic Climatological Approach.
Abstract
The Environmental Protection Agency has set national ambient air quality standards for six different pollutants: sulfur dioxide, nitrogen dioxide, ozone, total suspended particulates, nitrogen oxides, and oxidants. The goal of this study was to apply an automatic air mass-based synoptic methodology to surface weather data in order to evaluate the impact of climate on the above pollutant concentrations in Philadelphia, PA; Dallas, TX; and St. Louis, MO. A group of synoptic categories depicting the summer and winter weather in each city was developed using principal components analysis and average linkage clustering. The concentrations of the six air pollutants were then related to the synoptic weather categories. The synoptic categories and associated weather conditions exhibiting particularly high pollution concentrations were analyzed in detail. Ultimately, the procedure was validated for prediction of future pollutant levels. The results from this study support the conclusion that there is a close link between synoptic-air mass combinations and various pollutant concentrations. The climate-pollutant relationship seems to change from summer to winter in the three cities. It appears that climatic thresholds could be found for high levels of various air pollutants. Similar synoptic conditions appear to lead to high accumulations of all six pollutants, although the transportation-related pollutants showed more dependency on the level of solar radiation. These pollutants seem to be more significant in the southern city of Dallas. The synoptic methodology proved to be of assistance in developing a weather/pollution watch-warning system; such a system would be designed to signal impending synoptic conditions which could significantly raise pollutant concentrations.
- Publication:
-
Ph.D. Thesis
- Pub Date:
- 1991
- Bibcode:
- 1991PhDT.......105P
- Keywords:
-
- Physics: Atmospheric Science; Environmental Sciences; Physical Geography