Parallel Computation of Air Pollution Using a Second-Order Closure Model
Abstract
Rational analysis, prediction and policy making of air pollution problems depend on our understanding of the individual processes that govern the atmospheric system. In the past, computational constraints have prohibited the incorporation of detailed physics of many individual processes in air pollution models. This has resulted in poor model performance for realistic situations. Recent advances in computing capabilities make it possible to develop air pollution models which capture the essential physics of the individual processes. The present study uses a three -dimensional second-order closure diffusion model to simulate dispersion from ground level and elevated point sources in convective (daytime) boundary layers. The model uses mean and turbulence variables simulated with a one-dimensional second-order closure fluid dynamic model. The calculated mean profiles of wind and temperature are found to be in good agreement with the observed Day 33 Wangara data, whereas the calculated vertical profiles of turbulence variables agree well with those estimated from other numerical models and laboratory experiments. The three-dimensional second -order closure diffusion model can capture the plume behavior in daytime atmospheric boundary layer remarkably well in comparison with laboratory data. We also compare the second -order closure diffusion model with the commonly used K -diffusion model for the same meteorological conditions. In order to reduce the computational requirements for second -order closure models, we propose a parallel algorithm of a time-splitting finite element method for the numerical solution of the governing equations. The parallel time -splitting finite element method substantially reduces the model wallclock or turnaround time by exploiting the vector and parallel capabilities of modern supercomputers. The plethora of supercomputers in the market today made it important for us to study the key issue of algorithm "portability". In view of this, we have demonstrated that time-splitting finite element algorithm can provide significant speedups of the second-order closure model on various shared-memory computers with small programming effort. These results suggest that parallel computations hold the key for advanced numerical modeling of turbulent flows and diffusion.
- Publication:
-
Ph.D. Thesis
- Pub Date:
- February 1991
- Bibcode:
- 1991PhDT........77P
- Keywords:
-
- CONVECTIVE BOUNDARY LAYERS;
- PLUME;
- Engineering: Chemical; Physics: Atmospheric Science