Analysis of minor fractures associated with joints and faulted joints
Abstract
In this paper, we use fracture mechanics to interpret conditions responsible for secondary cracks that adorn joints and faulted joints in the Entrada Sandstone in Arches National Park, U.S.A. Because the joints in most places accommodated shearing offsets of a few mm to perhaps 1 dm, and thus became faulted joints, some of the minor cracks are due to faulting. However, in a few places where the shearing was zero, one can examine minor cracks due solely to interaction of joint segments at the time they formed. We recognize several types of minor cracks associated with subsequent faulting of the joints. One is the kink, a crack that occurs at the termination of a straight joint and whose trend is abruptly different from that of the joint. Kinks are common and should be studied because they contain a great deal of information about conditions during fracturing. The sense of kinking indicates the sense of shear during faulting: a kink that turns clockwise with respect to the direction of the main joint is a result of right-lateral shear, and a kink that turns counterclockwise is a result of left-lateral shear. Furthermore, the kink angle is related to the ratio of the shear stress responsible for the kinking to the normal stress responsible for the opening of the joint. The amount of opening of a joint at the time it faulted or even at the time the joint itself formed can be estimated by measuring the kink angle and the amount of strike-slip at some point along the faulted joint. Other fractures that form near terminations of pre-existing joints in response to shearing along the joint are horsetail fractures. Similar short fractures can occur anywhere along the length of the joints. The primary value in recognizing these fractures is that they indicate the sense of faulting accommodated by the host fracture and the direction of maximum tension. Even where there has been insignificant regional shearing in the Garden Area, the joints can have ornate terminations. Perhaps the simplest is a veer, where the end of one joint segment turns gradually toward a nearby joint segment. The veer is a result of a nearby, shear-stress-free face such as a joint surface. Our greatest difficulty has been explaining long overlap of parallel joint segments, that is, the lack of veer. The only plausible explanation we know is suggested by the research of Cottrell and Rice, that high compression parallel to the joint segments will tend to prevent the joints from turning toward one another. The most interesting and puzzling fractures are stepped joints and associated echelon cracks, in which the slight misalignment of the stepped joints suggests mild left-lateral shear, while the strong misalignment of echelon cracks that continue the traces of the stepped joints suggests strong right-lateral shear. The stepped joints are thought to reflect local left-lateral shearing that acted over an area of several thousand square metres, whereas the stepped echelon cracks reflect local interaction between the tips of nearby joints propagating in different directions.
- Publication:
-
Journal of Structural Geology
- Pub Date:
- 1991
- DOI:
- 10.1016/0191-8141(91)90083-U
- Bibcode:
- 1991JSG....13..865C