Heterojunction bipolar transistors with SiGe base grown by molecular beam epitaxy
Abstract
High-quality SiGe heterojunction bipolar transistors (HBTs) have been fabricated using material grown by molecular beam epitaxy (MBE). The height of parasitic barriers in the conduction band varied over the wafer, and the influence of these barriers on collector current, early voltage, and cutoff frequency were studied by experiments and simulations. Temperature-dependent measurements were performed to study the influence of the barriers on the effective bandgap narrowing in the base and to obtain an expression for the collector-current enhancement. From temperature-dependent measurements, the authors demonstrate that the collector-current enhancement of the HBTs can be described by a single exponential function with a temperature-independent prefactor.
- Publication:
-
IEEE Electron Device Letters
- Pub Date:
- July 1991
- DOI:
- 10.1109/55.103606
- Bibcode:
- 1991IEDL...12..357P
- Keywords:
-
- Bipolar Transistors;
- Electrical Properties;
- Germanium Alloys;
- Heterojunction Devices;
- Molecular Beam Epitaxy;
- Silicon Alloys;
- Electrical Measurement;
- Frequency Response;
- Temperature Dependence;
- Electronics and Electrical Engineering