Principles of quantum inference
Abstract
A new approach to quantum state determination is developed using data in the form of observed eigenvectors. An exceedingly natural inversion of such data results when the quantum probability rule is recognised as a conditional. The reversal of this conditional via Bayesian methods results in an inferred probability density over states which readily reduces to a density matrix estimator. The inclusion of concepts drawn from communication theory then defines an optimal state determination problem which is explored on Hilbert spaces of arbitrary finite dimensionality.
- Publication:
-
Annals of Physics
- Pub Date:
- April 1991
- DOI:
- 10.1016/0003-4916(91)90182-8
- Bibcode:
- 1991AnPhy.207..140J