Radiative Lifetimes of Metastable Atomic Ions.
Abstract
The natural radiative lifetimes of eleven metastable states of several atomic ions have been determined by monitoring for equal time intervals the photons emitted from an ion population containing the appropriate metastable species. The measured lifetimes range from 4.6 +/- 0.3 to 133 +/- 24 msec, and correspond to various low ionization states of the parent atoms. Of the eleven lifetimes, four are for states of mercury ions, six for noble gas ions, and one is for singly ionized nitrogen. The metastable ions were produced by electron bombardment of the appropriate neutral atomic vapor and stored inside a cylindrical, electrostatic ion trap. The pressure of the atomic vapor in the trapping volume ranged from 4 to 80 times 10^{ -8} Torr. The trap consists of a 5.0 cm diameter, 7.5 cm long cylinder with end caps and a concentric 0.003 cm diameter central cylinder maintained at a negative potential of about 150 volts. Electrons, produced by a tungsten dispenser cathode, are pulsed on for several msec, travel parallel to the trap axis, and acquire approximately 200 eV of kinetic energy before entering the ion confinement region. Following electron impact ionization of the atomic vapor, some of the photons emitted by the decaying metastable ion population emerge from the trap and are focused onto a 10 nm bandwidth interference filter. Photons transmitted by the filter are detected by a photomultiplier tube as a function of time, yielding a forbidden luminescence decay curve. As dictated by the composition of the photon decay curve, decay rates are obtained from a least-squares fit to the logarithm of either a single or a double component exponential decay. Mean decay rates are extrapolated to zero pressure of the parent atomic vapor using a straight -line least-squares fit; the radiative lifetimes of the metastable ions are obtained from the intercept of the pressure extrapolation.
- Publication:
-
Ph.D. Thesis
- Pub Date:
- 1990
- Bibcode:
- 1990PhDT.......112C
- Keywords:
-
- Physics: Atomic