X-Ray Studies of Thin Films and Interfaces.
Abstract
Presented here are a series of x-ray studies utilizing synchrotron radiation to investigate a variety of properties of thin films and interfaces in technologically important materials. By far the largest part of this dissertation is devoted to studies of x-ray reflectivity as a function of angle (mainly soft x rays), although some extended x -ray absorption fine structure (EXAFS) results are included as reprinted published papers (briefly discussed). The reflectivity discussion covers theory, experimental techniques, data analysis (by curve-fitting), and specific applications. The material systems studied by the x-ray reflectivity technique include: bulk silicon, GaAs, InAs, ~250 -A InAs layers deposited by molecular-beam epitaxy (MBE) on GaAs(100) substrates, four thicknesses (~ 126-1100 A) of SiO_2 /Si(100) produced by dry thermal oxidation, and ~250-A layers of CoSi_2 /Si(111) (two samples, one produced by MBE and one by solid-phase epitaxy). Results determined from the reflectivity measurements include: interfacial roughness parameters, refractive index of materials (in the energy range ~400-1100 eV), and overlayer thicknesses. It has been found for example that the indium -stabilized growth mode of InAs on GaAs(100) results in a smoother buried interface than the arsenic-stabilized growth mode, while the indium-stabilized growth mode on 2^circ-off GaAs(100) produces the smoothest buried interface (with typical roughness parameters in the range 10-19 A). Preliminary results indicate that growth of CoSi_2/Si(111) by MBE produces smoother buried interfaces than growth by solid-phase epitaxy. The roughness parameters have been explained in terms of growth conditions, lattice mismatch, and material inhomogeneity in the vicinity of the buried interface. The oxygen atomic scattering factor for photons in the range 400-800 eV (oxygen K edge ~ 540 eV) has also been deduced from a determination the Si and SiO_2 refractive indices. The EXAFS studies were used to investigate strain in InAs/GaAs(100) (In K edge), x-ray polarization effects in an InAs-AlSb superlattice (In K edge), and deviations from the virtual crystal approximation in (latticed-matched) 2mu m In_{0.53}Ga _{0.47}As/InP(100) (at In, Ga, and As K edges).
- Publication:
-
Ph.D. Thesis
- Pub Date:
- January 1990
- Bibcode:
- 1990PhDT........87W
- Keywords:
-
- Physics: Condensed Matter; Physics: Optics