Quantum and Statistical Mechanics Applied to Singlet Carbenes, Pericyclic Reactions, and Condensed Phase Phenomena
Abstract
The completed research covers a broad range of theoretical applications in organic chemistry. It is divided into three chapters which covers the chemistry of singlet carbenes (Chapter 1), substituent effects in pericyclic rearrangements (Chapter 2), and the effects of solvent on the reactivity of organic reactions (Chapter 3). The selectivity between 1,2- and 1,4-intramolecular additions to restricted diene systems has been investigated. A decrease in activation energy for the intramolecular cycloaddition is noted for systems which approach the idealized geometry found with intermolecular addition of carbenes to olefins. Direct substitution at the carbene site dramatically effects the predicted activation barriers for 1,2-hydrogen shifts. An excellent correlation between the activation energy and a substituents sigma_sp {rm R}{rm o} parameters has been demonstrated. The long standing problem of orbital alignment influences on the selectivity of 1,2-hydrogen arrangements shows significant geometric distortions, yet has little influence on the rates of singlet alkylcarbene rearrangements. The exo-selectivities observed for 1,2-shifts in rigid systems are explained by torsional and steric interactions which develop in the transition structures. Substituent effects on pericyclic reactions have been computed for several conrotatory and disrotatory electrocyclizations. The six-electron disrotatory electrocyclization of 1-substituted hexatrienes displays a strong electronic component in determining stereoselectivity, despite incredible steric interference. The eight-electron conrotatory electrocyclization transition structure of 1-substituted octatetraene has an unusual helical transition structure which does not differentiate between substituent position. The effects of solvents on the acidity differences between E and Z esters has supplemented earlier ab initio quantum mechanical results on the enhanced acidity of Meldrum's acid. Monte Carlo simulations predict a preferential stabilization of the E isomer in both acetonitrile and aqueous solutions. The rates of intramolecular Diels-Alder reactions are compared to recent experimental work and predictions of different solvent systems are made.
- Publication:
-
Ph.D. Thesis
- Pub Date:
- 1990
- Bibcode:
- 1990PhDT........41E
- Keywords:
-
- QUANTUM MECHANICS;
- CARBENES;
- Chemistry: Physical; Chemistry: Organic; Physics: Molecular