Investigation of Oxygen and Hydrogen Associated Charge Trapping and Electrical Characteristics of Silicon Nitride Films for Mnos Devices.
Abstract
Silicon nitride (Si_3N _4) and silicon oxynitride (SiO _{rm x}N_ {rm y}) films in the form of metal -nitride-oxide-silicon (MNOS) structures were investigated to determine the correlation between their electrical characteristics and the nature of the chemical bonding so as to provide guidelines for the next generation of nonvolatile memory devices. The photoionization cross section of electron traps in the oxynitride films of MNOS devices were also measured as a function photon energy and oxygen concentration of the silicon oxynitride films. An effective photoionization cross section associated with electron traps was determined to be between 4.9 times 10 ^{-19} cm^2 to 10.8 times 10^ {-19} cm^2 over the photon energy of 2.06 eV to 3.1 eV for silicon oxynitride films containing 7 atomic % to 17 atomic % of oxygen. The interface state density of metal-nitride-oxide -silicon (MNOS) devices was investigated as a function of processing conditions. The interface state density around the midgap of the oxide-silicon interface of the MNOS structures for deposition temperature between 650^ circC to 850^circC increased from 1.1 to 8.2 times 10 ^{11} cm^ {-2}eV^{-1}, for as-deposited silicon nitride films; but decreased from 5.0 to 3.5 times 10^ {11} cm^{-2} eV^{-1}, for films annealed in nitrogen at 900^circC for 60 minutes; and further decreased and remained constant at 1.5 times 10^{11 } cm^{-2}eV ^{-1}, for films which were further annealed in hydrogen at 900^ circC for an additional 60 minutes. The interface state density increase was due to an increase in the loss of hydrogen at the interfacial region and also due to an increase in the thermal stress caused by differences in thermal expansion coefficients of silicon nitride and silicon dioxide films at higher deposition temperatures. The interface state density was subject to two opposing influences; an increase by thermal stress, and a reduction by hydrogen compensation of these states. The photocurrent-voltage (photoI-V) technique in combination with internal photo-electric technique were employed to determine the trapped charge density and its centroid as a function of processing conditions. Results showed that the trapped charge density was of the order of 10^{18} cm ^{-3}. However, the charge trapping density increased about 30% as the atomic percentage of hydrogen decreased from 6 to 2 atomic %.
- Publication:
-
Ph.D. Thesis
- Pub Date:
- 1990
- Bibcode:
- 1990PhDT........19X
- Keywords:
-
- Engineering: Electronics and Electrical; Physics: Condensed Matter; Physics: Electricity and Magnetism