An infinitedimensional model of free convection
Abstract
An infinitedimensional model is derived from the equations of free convection in the BoussinesqOberbeck approximation. The velocity field is approximated by a single mode, while the heatconduction equation is conserved fully. It is shown that, for all supercritical Rayleigh numbers, there exist exactly two secondary convective regimes. The case of ideal convection with zero viscosity and thermal conductivity is examined. The averaging method is used to study convection regimes at high Reynolds numbers.
 Publication:

Akademiia Nauk SSSR Fizika Atmosfery i Okeana
 Pub Date:
 December 1990
 Bibcode:
 1990FizAO..26.1323I
 Keywords:

 Boussinesq Approximation;
 Free Convection;
 Heat Flux;
 Mathematical Models;
 Rayleigh Number;
 Three Dimensional Flow;
 High Reynolds Number;
 Hydrodynamics;
 Thermal Conductivity;
 Viscosity;
 Fluid Mechanics and Heat Transfer