Conducting Polymers: Insights Into Reduced Polyparaphenylene Vinylene Materials via Nucleophilic Addition, Proton Abstraction, and Electron Transfer Reactions.
Abstract
Grignard routes were investigated as methods to produce poly paraphenylene vinylene polymers. Because of coupling problems with these reactions, high molecular weight unsubstituted and dimethyl and dimethoxy substituted poly paraphenylene vinylene polymers were prepared via a literature-proven synthetic route: the sodium hydride dehydrochlorination addition polymerization route. Both the Grignard reactions and the sodium hydride method required dichloromethyl compounds monomers. The syntheses of these dichloromethyl monomers were studied extensively. The three high molecular weight poly paraphenylene vinylene polymer systems prepared in this work were charged with the traditional electron transfer reducing agent potassium/naphthalide. They were also charged via the novel nucleophilic addition of n-butyllithium across the alkenes and subjected to proton abstraction charging in the presence of a strong, complexed base mixture of n-butyllithium and potassium-t-butoxide. Conductivities were obtained via standard four point probe techniques. Characterization of these polymers and their quenched anion derivatives was via FTIR and acid titration. Results of these topics are presented and discussed.
- Publication:
-
Ph.D. Thesis
- Pub Date:
- 1989
- Bibcode:
- 1989PhDT.......181H
- Keywords:
-
- Chemistry: Polymer; Physics: Electricity and Magnetism