The Optical Properties of Biological Tissue.
Abstract
The ability of light to propagate through biological tissue has found much application in medicine (ie. Photodynamic therapy and Diaphanography). However, a poor understanding of this transport phenomenon has served to limit the effectiveness of those modalities employing it in their operation. This thesis is a study of light propagation through biological tissue, its goal being to improve on the lack of knowledge that presently exists. A spectrophotometer type instrument (DICOM-8) was developed to measure the diffuse spectra extinction of biological tissue. Results were obtained for both normal and diseased breast tissue. Extinction curves for the two tissues exhibited a similar shape (extinction monotonically decreasing with increasing wavelength) but differed in magnitude below 700 nm with carcinoma possessing a higher extinction than normal. Data obtained from these tissue measurements served as the basis for developing a homogeneous liquid (TEM) for simulating the optical properties of tissue over the range 550 to 900 nm. Bench-top Diaphanography studies carried out on a breast phantom constructed of TEM demonstrated the improved tumor visualization attainable with short wavelength light. TEM also functioned as a test medium in which light distributions resulting from highly controlled irradiation geometries (isotropic point and planar sources) were measured and compared with those predicted by Linear Transport (LT) theory. The mean free path (MFP) of TEM ranged from 0.206 mm at 550 nm to 0.495 mm at 900 nm and was found to be directly proportional to the square of the wavelength. The scatter/absorption coefficient (c) was 0.9986459 at 550 nm and 0.9997315 at 850 nm. Agreement between experimental and theoretical distributions was found to be extremely good. Theoretical distributions generated with LT theory revealed the fact that small changes in MFP will have little effect on light transport. Similar changes in c, meanwhile, will drastically alter the efficiency of propagation. Both absorption by hemoglobin and water were found to play a significant role in determining the spatial distribution of light in TEM. Of the four wavelengths studied (550, 600, 700 and 850 nm), light propagation was found to be optimal at 700 nm. LT theory was also used to examine the effects of source collimation and media interfaces on the spatial distribution of light within tissue. Finally, errors incurred with the Diffusion approximation were quantified.
- Publication:
-
Ph.D. Thesis
- Pub Date:
- 1988
- Bibcode:
- 1988PhDT.......137B
- Keywords:
-
- Physics: Optics