Behavior of the Reversed Field Pinch with Nonideal Boundary Conditions.
Abstract
The linear and nonlinear magnetohydrodynamic stability of current-driven modes is studied for a reversed field pinch with nonideal boundary conditions. The plasma is bounded by a thin resistive shell surrounded by a vacuum region out to a radius at which a perfectly conducting wall is situated. The distant wall and the thin shell problems are studied by removing either the resistive shell or the conducting wall. Linearly, growth rates of tearing modes and kink modes are calculated by analytical solutions based on the modified Bessel function model for the equilibrium. The effects of variation of the shell resistivity and wall proximity on the growth rates are investigated. The modes that may be important in different parameter regimes and with different boundary conditions are identified. These results then help to guide the nonlinear study, and also help to interpret the quasilinear aspect of the nonlinear results. The nonlinear behaviors are studied with a three -dimensional magnetohydrodynamics code. The fluctuations generally rise with increasing distance between the conducting wall and the plasma. The enhanced fluctuation induced v times b electric field primarily oppose toroidal current; hence, loop voltage must increase to sustain the constant. If the loop voltage is held constant, the current decreases and the plasma evolves toward a nonreversed tokamak-like state. Quasilinear interaction between modes typically associated with the dynamo action is identified as the most probable nonlinear destabilization mechanism. The helicity and energy balance properties of the simulation results are discussed. The interruption of current density along field lines intersecting the resistive shell is shown to lead to surface helicity leakage. This effect is intimately tied to stability, as fluctuation induced v times b electric field is necessary to transport the helicity to the surface. In this manner, all aspects of helicity balance, i.e., injection, transport, and dissipation, are considered self-consistently. The importance of the helicity and energy dissipation by the mean components of the magnetic field and current density is discussed.
- Publication:
-
Ph.D. Thesis
- Pub Date:
- 1988
- Bibcode:
- 1988PhDT.......135H
- Keywords:
-
- Physics: Fluid and Plasma