Massive and Massless Representations of the Super  Algebra in 10 Dimensions and the Decomposition of the Scalar Superfield.
Abstract
Casimir operators and the Cartan subalgebra are used to construct the scalar superfields in 10dimensions. In massless case it is shown that the scalar superfield contains two irreducible pieces, one bosonic and one fermionic. The bosonic one contains the supergravity multiplet. Supersymmetric version of the Cartan subalgebra is used to obtain the explicit expressions of the irreducible superfields. In massive case the scalar superfield contains two bosonic and one fermionic irreducible components. It is shown explicitly that the one of the bosonic pieces reduces to the above mentioned massless bosonic piece containing the supergravity multiplet in the massless limit. Supersymmetric generators corresponding to the root vectors of the Lie algebra are found and used with the Cartan subalgebra to construct the irreducible scalar superfields. Finally this method is also applied to the 4dimensional case and as a result the Transverse Vector Superfield is obtained.
 Publication:

Ph.D. Thesis
 Pub Date:
 December 1988
 Bibcode:
 1988PhDT........69K
 Keywords:

 Physics: Elementary Particles and High Energy