Dispersion and Excluded Volume Interactions in Nematic Liquid Crystals.
Abstract
The effectiveness of the potential of mean torque in accounting for solute orientation is explored. It is described by repulsive (excluded volume) and attractive forces (dispersion) and is tested using rigid, semi-flexible and flexible solutes dissolved in nematic phases. For rigid molecules (benzenes and anthracene) the attractive short range potential gave the best results. For anthracene the results indicated that the potential can discriminate between solute/solvent interactions. For wholly aliphatic solvents the excluded volume forces gave excellent agreement, as did the attractive forces for the aromatic solvents. For the semi-flexible molecule, biphenyl, quadrupole splittings were simulated using the internal torsion angle as a parameter. The values of this angle were predicted to vary systematically with temperature. Using crystallographic and idealized structural data as the starting points for the calculation, the structure of PAA in the nematic phase was estimated. Both the internal angle and the aromatic proton valence angles were determined. Flexible, "siamese-twin" liquid crystals having an internal per-deuterated spacer consisting of ten methylenes were studied. They differed only in the length of the aliphatic tails (5105, 101010). The quadrupole splittings of both twins dissolved in the nematic phase of BCH-S1131 were identical. Quantitative simulations of the splittings using standard RIS geometry and excluded volume forces were successful. In the bulk nematic phase the order parameter of 5105 was greater than 101010. The difference was interpreted as a dilution effect of the mesogenic cores by aliphatic tails. Simulations indicated the conformation of the spacer is highly extended. As parameterized the required strength of the mean field is a strong function of the molecular dimensions, suggesting that the current description still is incomplete.
- Publication:
-
Ph.D. Thesis
- Pub Date:
- December 1988
- Bibcode:
- 1988PhDT........60P
- Keywords:
-
- Chemistry: Polymer; Physics: Molecular