Far field of steady waves produced by local perturbation sources in stream of stratified fluid
Abstract
Formation of waves during horizontal flow of a nonviscous incompressible vertically stratified fluid past point sources of perturbation is treated as a threedimensional problem, only the steady state being considered. The differential equation for the vertical velocity component with a Brentfrequency term added and with a deltafunction term on the righthand side is formulated in the linear approximation, with appropriate boundary conditions at a source and at infinity as well as the condition of radiation. After a Fourier transformation in the space domain, this equation is solved as a SturmLiouville eigenvalue problem by uniform asymptotic expansions in the vicinity of mode fronts in the far field: expansions of Airy functions for a fluid body of finite depth.
 Publication:

JPRS Report Science Technology USSR Space
 Pub Date:
 June 1987
 Bibcode:
 1987RpScT.......11S
 Keywords:

 Far Fields;
 Stratified Flow;
 Water Waves;
 Wave Generation;
 Horizontal Orientation;
 Incompressible Flow;
 Inviscid Flow;
 Fluid Mechanics and Heat Transfer