Vibrating Transducers for Fluid Measurement.
Abstract
When a structure vibrates in a fluid, some of this is carried with it creating inertial loading whilst compression adds a stiffness effect. In addition there is energy dissipation arising from viscous losses and acoustic radiation. By design, any one of these properties can be arranged to predominate. A tuning fork transducer with flat rectangular tines, is discussed. In this, a narrow laminar of gas is pumped in and out as the tines vibrate. The increase in kinetic energy contributed by this high velocity gas, gives the device a large sensitivity as a density transducer. The resonator is incorporated as the frequency controlling element in a high stability oscillator. Small piezoelectric elements are used to excite and pickup the vibrations. A typical stability equivalent to a pressure change of 0.05 mBar, is achieved. Temperature effects are given careful analysis. A circular tuning fork, where the tines produce a radial gas displacement, is also reviewed. Common to all, is the linearity of frequency ^2 with the inverse of density for pressures above 50 mBar; a departure from linearity below this pressure (acoustic in origin); and below 10 mBar, an overriding stiffness effect where the frequency paradoxically increases with pressure. A further design comprises a resonator in which the gas is confined to two cylindrical cavities above and below a thin circular diaphragm, clamped at the periphery. In the fundamental mode, the alternating change in cavity volume exerts a stiffness, while in the first overtone, the predominantly lateral motion of the gas across the cavity adds inertia. Frequency^2 is linear with pressure for the fundamental, while for the first overtone it is inversely linear with density. A theory which is sufficiently accurate for general design purposes is presented. A sensitive viscometer is also discussed where a long rod is excited into a torsional mode with two securing nodes a quarter wavelength from either end. Driving the rod with a burst of oscillations, shears the liquid in contact with the lower end. Removing the drive and recording the decay rate, yields a measure of viscosity.
 Publication:

Ph.D. Thesis
 Pub Date:
 1987
 Bibcode:
 1987PhDT.......216S
 Keywords:

 Physics: Fluid and Plasma