Nuclear Time Delay Effects on K-Vacancy Production in Deep-Inelastic U+U Collisions
Abstract
Atomic K-vacancy production in 7.5-MeV/u U+U collisons has been studied for small-impact-parameter (b) elastic scattering and for deep-inelastic nuclear reactions, by measuring coincidences between U x-rays and scattered U particles. The K-vacancy production probability (P(,K)(b)) in elastic U+U collisions was measured as a function of b and it is shown that P(,K) follows a scaling law from b = 10 to 85 fm. Below 10 fm, P(,K)(b) increases sharply from 0.91 (+OR-) 0.08 at 11.6 fm to a maximum of 1.8 (+OR -) 0.18 vacancies per collison at 7 fm. This behavior at small b could be due to rotational coupling of the 2p(,3/2)(pi), 2p(,3/2)(sigma) (--->) 2p(,1/2)(sigma) molecular orbitals, but present theoretical calculations do not reflect this. Since internal conversion is a major background in these measurements, it was necessary to observe how the internal conversion changes in elastic collisions as b (--->) 0, so that the internal conversion for atomic collisons accompanied by nuclear reactions could be understood. Nuclear-reaction effects of P(,K)(b (DBLTURN) 0) were studied as a function of the total kinetic energy loss (TKEL) of the nuclear interaction for 2-body break -up (U + U (--->) U' + U'') and 3-body break-up (U + U ( --->) U' + 2ff). In 4-body break-up (U + U (--->) 2ff' + 2ff''), P(,K) was measured over all TKEL. In 2-body break-up a 78% reduction of P(,K) is observed between TKEL = 0 and 275 MeV. This trend matches a theoretical decrease in P(,K)(T(,D)), where T(,D) in the nuclear interaction time or delay time. A parametric relation between TKEL and T(,D) can be formed between the theoretical calculation and the experimental result. A delay time of (0.52 (+OR -) 0.17) x 10('-21) sec at TKEL = 100 MeV is deter- mined. There is overall agreement between this atomic physics result and nuclear diffusion model calculations. The measured P(,K)(TKEL) for 3-body break-up is nearly identical to that of 2-body break-up. This indicates that there is a large compo- nent of fissioning nuclei ((TURN)50%) whose fission time (T(,f)) can not be much smaller than the U K-vacancy decay time (T(,K)(U) (DBLTURN) 10('-18) sec). The overall P(,K)('3-body) results and a study of distinct spatial orientations of the fission fragments in relation to the surviving U-like partner show a reduction in P(,K)('3-body) for TKEL >(, )175 MeV. This could imply that T(,f) (LESSTHEQ) 10('-18) sec for TKEL >(, )175 MeV. Measurement of the net U K x-ray yield over all TKEL in 4-body break-up reveals that P(,K)('4-body) = 0.36 (+OR-) 0.08. When compared to similar net probabilities for 2- and 3-body break-up, this indicates that about 50% of the U-like reaction partners which ultimately fission live at least 10('-18) sec. This result is in overall agreement with the 3-body results, but exceeds usual nuclear physics estimates of T(,f) (TURN) 10('-20) sec. However, crystal blocking techniques have observed long lived fission components (T(,f) (GREATERTHEQ) 10('-18) sec) in some nuclear reactions.
- Publication:
-
Ph.D. Thesis
- Pub Date:
- September 1987
- Bibcode:
- 1987PhDT........92M
- Keywords:
-
- HEAVY-ION REACTIONS;
- Physics: Atomic