Dry matter partitioning and root length/leaf area ratios in herbaceous perennial plants with diverse altitudinal distribution
Abstract
Partitioning patterns in 22 exclusively low and 27 exclusively high altitude perennial herbaceous species were examined in order to test the hypothesis that plants of high altitudes allocate more dry matter to below-ground parts and in particular to storage organs, than typical low altitude plants. Our results raise some doubts about the general validity of this hypothesis. The mean fractions of total dry matter allocated to green leaves (22±2% s.e. at low and 24±2% at high altitude) and special storage organs (28±4% at both altitudes) do not differ significantly among sites. The mean relative portions of total dry matter allocated to above-ground plant parts amount to 57±3% at low and 42±3% at high elevation (P=0.002) and differ less than often assumed. The greater below-ground fraction at high altitude results from reduced stem and proportionally increased fine root compartments. At high altitude specific root length is increased by 50% and mean individual rooting density is tripled. Fine root length per unit leaf area is 4.5 times greater (P<0.001). However, interspecific variation in all these quantities is considerable and species with quite contrasting partitioning patterns coexist at both elevations. This suggests that the success of perennial herbaceous plants at high elevations does not necessarily depend on a large below ground biomass fraction. The increased fine root length at high altitude may substitute for reduced mycorrhizal infection. Figure 1 provides a graphical summary.
- Publication:
-
Oecologia
- Pub Date:
- December 1987
- DOI:
- Bibcode:
- 1987Oecol..74..411K
- Keywords:
-
- Alpine ecology;
- Shoot/root ratio;
- Fine roots;
- Rooting density;
- Climate stress