The interaction of Sb 4 molecular beams with Si(100) surfaces: Modulated-beam mass spectrometry and thermally stimulated desorption studies
Abstract
Modulated-beam mass spectrometry and thermally-stimulated desorption measurements were used to show that Sb 4 is dissociatively chemisorbed on clean Si(100) at all temperatures investigated, from 100 to 1025°C. For Si substrate temperatures Ts less than 600°C, desorption was only observed from precursor states corresponding to Sb 4 molecules adsorbed on top of a dissociatively chemisorbed Sb layer. The Sb 4 sticking probability s was nearly unity and independent of θSb for θSb ≲ 0.7 monolayers (ML) but decreased rapidly with increasing θSb above 0.7 ML to reach s = 0 at a saturation coverage of θSb = 1.0 ML (referenced to the surface site density of unreconstructed Si(100), 6.8 × 10 14 cm -2). Above 600°C, the desorbing Sb 4 flux decreased rapidly as the saturation coverage decreased and an increasing fraction of the impinging Sb 4 flux was desorbed from dissociatively chemisorbed states as Sb monomers. Sb 1 was the only desorbing species detected at Ts ≳ 800°C. The activation energy for Sb 1 desorption was 2.40 ± 0.1 eV for θSb ≲ 0.5 ML and 2.33 ± 0.1 eV for θSb ≳ 0.5 ML as determined by thermally stimulated desorption, surface lifetime, and saturation coverage measurements. A simple model for Sb 4/Si(100) interactions involving a mobile Sb 4 precursor state and repulsive lateral interactions between chemisorbed Sb adatoms was used to calculate desorption rate kinetics and found to provide excellent agreement with the measured data.
- Publication:
-
Surface Science
- Pub Date:
- January 1986
- DOI:
- 10.1016/0039-6028(86)90809-5
- Bibcode:
- 1986SurSc.165..303B