Measurement of the 1S-2S Frequency in Atomic Hydrogen
Abstract
A first precise measurement of the 1S-2S energy interval in atomic hydrogen has been obtained by observing the 1S-2S transition in an atomic beam by pulsed Doppler -free two-photon spectroscopy and using an interferometrically calibrated line of ('130)Te(,2) at 486 nm as the reference. The measured 1S-2S frequency is 2 466 061 395.6(4.9) MHz. With the calculated 1S Lamb shift, the 1S-2S frequency yields a value for the Rydberg constant, R(,(INFIN)) = 109 737.314 92(22) cm('-1), which is not in good agreement with the most recent previously measured value, 109 737.315 44(11) cm('-1), obtained by S. R. Amin et al.('16) It is, however, in good agreement with a previous Rydberg value, 109 737.315 04(32) cm('-1), measured by J. E. M. Goldsmith('17). If the Rydberg constant is taken as given, the 1S-2S frequency determines a value for the 1S Lamb shift. With Amin's Rydberg, the measured Lamb shift is 8161.0(5.4) MHz, in poor agreement with the theoretical value of 8149.43(8) MHz. With Goldsmith's Rydberg, the measured Lamb shift is 8151.0(8.7) MHz, in good agreement with theory.
- Publication:
-
Ph.D. Thesis
- Pub Date:
- 1986
- Bibcode:
- 1986PhDT........52H
- Keywords:
-
- RYDBERG CONSTANT;
- LAMB SHIFT;
- Physics: Atomic