Geochemistry of brachiopods: Oxygen and carbon isotopic records of Paleozoic oceans
Abstract
Combined trace element and isotope studies of 319 brachiopods, covering the Ordovician to Permian time span, show that δ 13C and δ 18O in well preserved specimens varied during the Paleozoic. The overall δ 13C secular trend is in accord with the previously published observations, but its details are obscured by vital isotopic fractionation effects at generic level. Nonetheless, the results suggest that the negative correlation between marine δ 13C carbonate and δ 34S sulphate deteriorates at time scales of ⩽ 10 6 years, due to the long residence time, and thus slow response, of SO 42- in the ocean. For oxygen isotopes, all Devonian and older specimens have δ 18O of ⩽ -4%, while the well preserved Permian samples have near-present day δ 18O of about -1% (PDB). This isotopic dichotomy is probably not due to post-depositional phenomena, salinity, or biogenic fractionation effects. This leaves open the perennial arguments for a change in 18O /16O of sea water versus warmer ancient oceans. The present data are difficult to explain solely by the temperature alternative. The coincidence of the proposed shift in δ 18O with the large Late Paleozoic changes in marine 87Sr /86Sr , 13C /12C , 34S /32S , and "sea level stands" argues for a tectonic cause and for a change in 18O /16O of sea water, although such explanation is difficult to reconcile with global balance considerations and with isotopic patterns observed in alteration products of ancient basalts and ophiolites. Whatever the precise cause, or combination of causes, the implications for tectonism and/or paleoclimatology are of first order significance.
- Publication:
-
Geochimica et Cosmochimica Acta
- Pub Date:
- August 1986
- DOI:
- Bibcode:
- 1986GeCoA..50.1679V