Numerical solution of incompressible flows by a marching multigrid nonlinear method
Abstract
A downstream marching iterative scheme for the solution of the steady, incompressible and two dimensional parabolized or thin layer Navier-Stokes equations is described for a general curvilinear orthogonal coordinate system. Modifications of the primitive equation global relaxation sweep procedure result in an efficient marching scheme. This scheme takes full account of the reduced order of the approximate equations as it behaves like the SLOR method for a single elliptic equation. The proposed algorithm is essentially Reynolds number independent and therefore can be applied to the solution of the incompressible Euler equations. A judicious choice of a staggered mesh enables second order accuracy even in the marching direction. The improved smoothing properties permit the introduction of Multi-Grid acceleration. The convergence rates are similar to those obtained by the Multi-Grid solution of a single elliptic equation; the storage is also comparable as only the pressure has to be stored on all levels. Numerical results are presented for several boundary layer type flow problems, including the flow over a spheroid at zero incidence.
- Publication:
-
7th Computational Fluid Dynamics Conference
- Pub Date:
- 1985
- Bibcode:
- 1985cfd..conf..108R
- Keywords:
-
- Computational Fluid Dynamics;
- Computational Grids;
- Incompressible Flow;
- Viscous Flow;
- Cartesian Coordinates;
- Finite Difference Theory;
- Flow Distribution;
- Iterative Solution;
- Navier-Stokes Equation;
- Parabolic Differential Equations;
- Skin Friction;
- Fluid Mechanics and Heat Transfer