A Statistical Theory of Fracture in a TwoPhase Brittle Material
Abstract
A statistical theory of a twophase material consisting of a brittle matrix with a dispersion of tougher secondphase particles is developed. In this material, failure does not occur immediately a microfracture is initiated at a flaw in the matrix. Stable cracks spanning the secondphase particles are possible and many will form before final failure occurs, especially in large specimens. The expected number of such cracks that are formed at any stress level is calculated. The statistical strength distribution for specimens under both tension and bending is obtained. It is shown that in a twophase material the ratio of bending to tensile strength of a beam decreases with size, whatever flawsize distribution is assumed.
 Publication:

Proceedings of the Royal Society of London Series A
 Pub Date:
 October 1985
 DOI:
 10.1098/rspa.1985.0097
 Bibcode:
 1985RSPSA.401..251H