NMR Studies of Motions in Solids: 1. Motional Narrowing in Adamantane. Non-Exponential Relaxation of FLUORINE-19 in the Fast-Ionic Conductor Lead-Fluoride
Abstract
The translational motion of molecules in the plastic crystal phase of adamantane is studied using the technique of motional narrowing. A systematic measurement of free induction decays (fids) was made in the moderate narrowing region of the absorption line and the motional parameters such as activation energy and jump frequency are determined from them. A general calculation for the coefficients of the power series expansion of these fids, using a technique similar to the Van Vleck method of moments, is presented. The spatial variables are treated as classical stochastic Markov variables. A relationship between one of the moment-like expansion coefficients and the spin-lattice relaxation time in the rotating frame is established. In addition, an integral equation is derived to describe the long time behavior of the narrowing process. The spin-lattice relaxation technique is used to study the ionic motion in fast-ionic conductor (beta) -PbF(,2) doped with monovalent cations. The relaxation time T(,1r) measured as a function of temperature and rotating magnetic field shows anomalous behavior. In this work, the non-exponential decay of the spin-locked magnetization is explained by proposing a nonuniform distribution of the dopant ions. A phenomenological model is used to describe the probability density distribution of a vacancy around a dopant center. The resulting expression fits the spin -locked magnetization decay data very well.
- Publication:
-
Ph.D. Thesis
- Pub Date:
- 1985
- Bibcode:
- 1985PhDT........82P
- Keywords:
-
- Physics: Condensed Matter