Peroxisomal organization in normal and cerebrohepatorenal (Zellweger) syndrome fibroblasts.
Abstract
The reported absence of morphologically detectable peroxisomes in liver and kidney tissue cells from patients affected by the autosomic recessive, inherited metabolic disease known as cerebrohepatorenal, or Zellweger, syndrome was studied in fibroblasts, assuming it to be a generalized defect. Normal cultured fibroblasts were shown to contain peroxisomes according to morphological, biochemical, and subcellular fractionation criteria: particle-bound catalase and fatty acyl-CoA oxidase copurify in subcellular fractionation by differential centrifugation or isopycnic equilibrium in continuous density gradients and peroxidase-positive organelles of approximately equal to 0.1 micron in diameter are detected in the cytoplasm. In Zellweger cultured fibroblasts, these peroxisomal enzymes are present; however, they behave as cytosolic enzymes in the different subcellular fractionation procedures employed and peroxisomes are not detected cytochemically. These findings support the hypothesis that the lack of peroxisomes in this genetic disease is the consequence of a defect in the assembly of the peroxisomal constituents. Furthermore, the value of fibroblasts for subcellular analysis of peroxisomal defects is illustrated.
- Publication:
-
Proceedings of the National Academy of Science
- Pub Date:
- October 1985
- DOI:
- 10.1073/pnas.82.19.6556
- Bibcode:
- 1985PNAS...82.6556S