Statistical properties and stability of hot nuclei
Abstract
Results of temperature-dependent Hartree-Fock calculations for equilibrated hot nuclei are presented, extending to the highest temperatures at which the nuclei remain stable. A subtraction procedure developed earlier for isolating the properties of the nucleus from the nucleus + vapor system is applied. The temperature dependence of various quantities characterizing hot nuclei is investigated. The influence of different effective interactions in the Hartree-Fock equations is examined. Special attention is devoted to the study of the high-temperature stability limit of hot nuclei. This limit in nuclei with the Coulomb interaction artificially switched off (i.e. uncharged nuclei) is shown to correspond to the critical temperature of the liquid-gas phase transition expected on the basis of hot nuclear matter calculations. In realistic charged nuclei the Coulomb repulsion causes a nucleus to become electrostatically unstable and to fall apart at much lower temperatures than its uncharged partner. The approach to and the temperature of this Coulomb instability are very sensitive to the choice of the nuclear interaction. Studying this instability in compound nuclei with different charge-to-mass ratio provides a sensitive measure of the temperature dependence of the nuclear surface properties as well as of certain features of the nuclear equation of state.
- Publication:
-
Nuclear Physics A
- Pub Date:
- April 1985
- DOI:
- 10.1016/0375-9474(85)90199-X
- Bibcode:
- 1985NuPhA.436..265B