SelfAvoiding Walks on the Random Lattice and the Random Hopping Model on a Cayley Tree
Abstract
Using a field theoretic method based on the replica trick, it is proved that the threeparameter renormalization group for an nvector model with quenched randomness reduces to a twoparameter one in the limit n (>) 0 which corresponds to selfavoiding walks (SAWs). This is also shown by the explicit calculation of the renormalization group recursion relations to second order in (epsilon). From this reduction we find that SAWs on the random lattice are in the same universality class as SAWs on the regular lattice. By analogy with the case of the nvector model with cubic anisotropy in the limit n (>) 1, the fixedpoint structure of the nvector model with randomness is analyzed in the SAW limit, so that a physical interpretation of the unphysical fixed point is given. Corrections of the values of critical exponents of the unphysical fixed point published previously is also given. Next we formulate an integral equation and recursion relations for the configurationally averaged one particle Green's function of the random hopping model on a Cayley tree of coordination number ((sigma) + 1). This formalism is tested by applying it successfully to the nonrandom model. Using this scheme for 1 << (sigma) < (INFIN) we calculate the density of states of this model with a Gaussian distribution of hopping matrix elements in the range of energy E('2) > E(,c)('2), where E(,c) is a critical energy described below. The singularity in the Green's function which occurs at energy E(,1)('(0)) for (sigma) = (INFIN) is shifted to complex energy E(,1) (on the unphysical sheet of energy E) for small (sigma)('1). This calculation shows that the density of states is smooth function of energy E around the critical energy E(,c) = Re E(,1) in accord with Wegner's theorem. In this formulation the density of states has no sharp phase transition on the real axis of E because E(,1) has developed an imaginary part. Using the Lifschitz argument, we calculate the density of states near the band edge for the model when the hopping matrix elements are governed by a bounded probability distribution. It is also shown within the dynamical system language that the density of states of the model with a bounded distribution never vanishes inside the band and we suggest a theoretical mechanism for the formation of energy bands.
 Publication:

Ph.D. Thesis
 Pub Date:
 1984
 Bibcode:
 1984PhDT.......112K
 Keywords:

 POLYMER;
 LOCALIZATION;
 RENORMALIZATION GROUP;
 Physics: Condensed Matter