Picosecond Optical Studies of Semiconductor Dynamics
Abstract
An investigation of the recombination dynamics of a photoexcited electron-hole plasma is reported. The experiment performed is a pump-probe type utilizing time -of-flight delay techniques to extract the time dependence of a relaxing plasma. Polarization techniques are utilized to eliminate background reflection. The pulses utilized are 15 psec in width at (lamda) = 630nm and excitation energy densities vary between 1-5mJ/cm('2). The theory describing the reflectivity change due to the presence of the plasma and to lattice temperature changes is derived. The theory for the recombination dynamics includes the process of Auger recombination, bimolecular recombination, and linear recombination. The predictions made by the theory within its limitations are compared to the data obtained. Analysis shows that the dynamics predicted are accurate for part of the energy range available, however, at the high energies the limitations placed on the theory are violated and the dynamics observed no longer agree with the predictions. The result is that investigations at these energy densities must account for the lattice temperature rise and its secondary effects. Also this work points out the necessity of an accurate description of the pump energy absorption dynamics in order to fully explain the initial conditions required for and accurate description of the relaxation process.
- Publication:
-
Ph.D. Thesis
- Pub Date:
- 1984
- Bibcode:
- 1984PhDT........66M
- Keywords:
-
- GALLIUM-ARSENIDE;
- REFLECTIVITY;
- RECOMBINATION;
- Physics: Condensed Matter