Observation of New Spontaneous Fission Activities from Elements 100 TO 105.
Abstract
Several new Spontaneous Fission (SF) activities have been found. Their half-lives and production cross sections in several reactions have been measured by collecting and transporting recoils at known speed past mica track detectors. No definite identification could be made for any of the new SF activities; however, half-lives and possible assignments to element-104 isotopes consistent with several cross bombardments include ('257)Rf(3.8 s, 14% SF), ('258)Rf(13 ms), ('259)Rf((TURN)3 s, 8% SF), ('260)Rf((TURN)20 ms), and ('262)Rf((TURN)50ms). The 80-ms SF activity claimed by the Dubna group for the discovery of element 104 (('260)104) was not observed. A difficulty exists in the interpretation that ('260)Rf is a (TURN)20-ms SF activity: in order to be correct, for example, the SF activities with half-lives between 14 and 24 ms produced in the reactions 109- to 119-MeV ('18)O + ('248)Cm, 88- to 100-MeV ('15)N + ('249)Bk, and 96-MeV ('18)O + ('249)Cf must be other nuclides due to their large production cross sections, or the cross sections for production of ('260)Rf must be enhanced by unknown mechanisms. Based on calculated total production cross sections a possible (TURN)1% electron-capture branch in ('258)Lr(4.5 s) to the SF emitter ('258)No(1.2 ms) and an upper limit of 0.05% for SF branching in ('254)No(55 s) were determined. Other measured half-lives from unknown nuclides produced in respective reactions include (TURN)1.6 s (('18)O + ('248)Cm), indications of a (TURN)47-s SF activity (75-MeV ('12)C + ('249)Cf), and two or more SF activities with 3 s (LESSTHEQ) T(, 1/2) (LESSTHEQ) 60 s (('18)O + ('249)Bk). The most exciting conclusion of this work is that if the tentative assignments to even-even element -104 isotopes are correct, there would be a sudden change in the SF half-life systematics at element 104 which has been predicted theoretically by Randrup et al. and Baran et al. and attributed to the disappearance of the second hump of the double-humped fission barrier. This disappearance of the second barrier also explains the tentative low hindrance factors compared to lighter elements for SF of the odd -mass isotopes ('257)Rf((TURN)4 x 10('3)) and ('259)Rf((TURN)2 x 10('3)). On the basis of recent odd-mass alpha-decay energy data, the 152-neutron sub-shell effect is probably weaker for element 104 than for element 102, confirming predictions of Randrup et al., and not strong enough to significantly alter the SF half-life predictions. This weakening sub-shell effect is in contrast to the continuing strong effect assumed in the Ghiorso half-life systematics. The possibilities of enhanced stability against SF with 157 neutrons for ('261)RF(65 s) and theoretical arguments concerning the SF-mass distributions for element-104 nuclei are discussed.
- Publication:
-
Ph.D. Thesis
- Pub Date:
- 1982
- Bibcode:
- 1982PhDT.......123S
- Keywords:
-
- Physics: Nuclear