A two time-scale model of stratified shelf currents
Abstract
Stratification is incorporated into an unsteady model of shelf currents by splitting the dynamic response of the flow into two parts, each with its own time scale. The barotropic part of the response is independent of depth and varies rapidly on a short time scale, whereas the baroclinic part depends on depth and changes slowly with time on a long time scale. The three-dimensional model has a continental shelf sloping down from an eastern boundary to the deep ocean. The equations for the barotropic component of the pressure field contain forcing by the wind stress and feedback from the baroclinic field. An integral of the heat equation over the long time scale determines the slow changes in the temperature field and hence in the baroclinic component of the velocity distribution. The temperature field is specified at the start of the numerical calculation. Its subsequent development is controlled by the numerical procedure. It is found that significant changes in the temperature field require a long period of upwelling favourable winds, whereas the longshore currents react more quickly to changes in the wind stress.
- Publication:
-
Continental Shelf Research
- Pub Date:
- November 1982
- DOI:
- 10.1016/0278-4343(82)90002-4
- Bibcode:
- 1982CSR.....1..143J