a Search for Neutrino-Electron Elastic Scattering at the LAMPF Beam Stop.
Abstract
Neutrino-electron elastic scattering reactions play an important role in tests of weak interaction theory. The four reactions which may be considered are:. (nu)(,e) + e('-) (--->) (nu)(,e) + e('-). (nu)(,e)(' )+ e('-) (--->) (nu)(,e) + e('-). (nu)(,(mu)) + e('-) (--->) (nu)(,(mu)) + e('-). (nu)(,(mu))(' )+ e('-) (--->) (nu)(,(mu)) + e(' -). The experimental study of these purely leptonic interactions severely tests basic theoretical ideas, and the reaction with (nu)(,e) has not yet been observed. The characteristics of Los Alamos Meson Physics Facility. (LAMPF) are such that (nu)(,e) is rarely produced, whereas (nu)(,e),(nu)(,(mu)), and(' ). (nu)(,(mu)) are present in equal numbers. Thus, data on all three processes(' ). will be collected simultaneously, but the (nu)(,e) reaction is expected to dominate. However, such studies are exceedingly difficult. The main problem arises from the nature of the event signature (an undetected particle enters the detector producing a single recoil electron) coupled with the miniscule cross sections expected (and therefore low event rates) amid numerous sources of background events. To learn how to reduce the rates of such backgrounds, the UCI Neutrino Group installed in the Neutrino Facility in 1974 a small scale detector system consisting of a sandwich of optical spark chambers and plastic scintillator slabs (0.38 metric tons) which was shielded by 2 1/2" of Pb and enclosed by tanks of liquid scintillator used as an anticoincidence. Electronics and instrumentation, including a CAMAC system interfaced with a PDP-11/05 computer, were housed in a nearby trailer. The 1974 study was carried out with the LAMPF Neutrino Facility shielded against cosmic rays by Fe walls 3' thick and a 4' Fe roof. Nevertheless, stopping cosmic ray muons appeared to give rise to the substantial number of background electron events observed. Several techniques were invoked to reduce the potential background for neutrino -electron elastic scattering to (1.5 (+OR-) 0.5) day('-1). Improved statistics from 1976 gave (1.48 (+OR-) 0.34) day('-1). If this number could be further reduced--by additional shielding, for example--then the experiment would be easier. However, data taken in 1975 with varying thicknesses of Pb on top of the sandwich detector and in 1976 with an additional 1' of Fe on the roof showed that there is no significant advantage to having more Pb or Fe in those areas. The accelerator may also be a source of background. When the accelerator is operating, neutrons from the beam stop can penetrate the Fe shielding to produce an excessive trigger rate (energetic neutrons) or on excessive dead time (thermal neutrons), especially in the more massive ANTI required for the full scale experiment. However, data taken in 1974 with 10(mu)A accelerator current and 4m Fe as beam stop shielding, and in 1976 with 100 (mu)A and 5m Fe, showed that the neutron flux was well under control. The ultimate configuration requires much higher beam currents, but also calls for additional Fe so that neutrons will not be a problem. In both 1974 and 1976 there were no electron events remaining in the accelerator data following subtraction of cosmic ray background. This fact can be used to set an upper limit on the elastic scattering cross section for (nu)(,e):. (sigma)(,exp) < 38 (sigma)(,V-A) with 90% confidence. The results of these studies determined the amount of shielding required for a full scale neutrino experiment, established the need for a very efficient active anticoincidence, and aided the design of a 14.4 metric ton sandwich detector of flash chamber modules and plastic scintillator slabs. Developmental work for the full scale detector system began in 1977, and some of the subsequent construction work is still in progress. However, the Neutrino Facility has been prepared, and portions of the sandwich detector have been installed. The first information on neutrino -electron elastic scattering could be available by the middle of 1982.
- Publication:
-
Ph.D. Thesis
- Pub Date:
- 1981
- Bibcode:
- 1981PhDT.......152B
- Keywords:
-
- Physics: Elementary Particles and High Energy