Depletion of glutathione selectively inhibits synthesis of leukotriene C by macrophages.
Abstract
We have examined the role of glutathione synthesis and intracellular glutathione content in the formation of leukotriene C (LTC) by mouse peritoneal macrophages. For this purpose, we utilized the drug buthionine sulfoximine (BSO), a specific inhibitor of glutathione synthesis. Thirty minutes after the addition of BSO (200 microM) to macrophage cultures, when glutathione synthesis was inhibited approximately 80%, the cells responded to a zymosan challenge with a normal release of LTC. During this period, intracellular glutathione stores were not significantly depleted. Cells exposed to BSO for 2 hr or more exhibited marked decreases in glutathione levels and a progressive inhibition of LTC synthesis. After exposure to BSO for 16 hr, intracellular glutathione was undetectable, and no LTC was synthesized by the cells. Treatment of macrophages with BSO for 16 hr had no effect on cell viability, phagocytosis, total release of arachidonic acid, or prostaglandin synthesis. However, an increased synthesis of hydroxyicosatetraenoic acids in BSO-treated cells compensated for the diminished production of LTC. We conclude that BSO produces a specific, time-dependent inhibition of LTC synthesis as a result of intracellular glutathione depletion. This is consistent with a biosynthetic pathway for LTC in which glutathione is a direct precursor of this arachidonic acid metabolite.
- Publication:
-
Proceedings of the National Academy of Science
- Pub Date:
- April 1981
- DOI:
- Bibcode:
- 1981PNAS...78.2532R