Towards the Ultimate Conservative Difference Scheme. V. A Second-Order Sequel to Godunov's Method
Abstract
A method of second-order accuracy is described for integrating the equations of ideal compressible flow. The method is based on the integral conservation laws and is dissipative, so that it can be used across shocks. The heart of the method is a one-dimensional Lagrangean scheme that may be regarded as a second-order sequel to Godunov's method. The second-order accuracy is achieved by taking the distributions of the state quantities inside a gas slab to be linear, rather than uniform as in Godunov's method. The Lagrangean results are remapped with least-squares accuracy onto the desired Euler grid in a separate step. Several monotonicity algorithms are applied to ensure positivity, monotonicity and nonlinear stability. Higher dimensions are covered through time splitting. Numerical results for one-dimensional and two-dimensional flows are presented, demonstrating the efficiency of the method. The paper concludes with a summary of the results of the whole series "Towards the Ultimate Conservative Difference Scheme."
- Publication:
-
Journal of Computational Physics
- Pub Date:
- July 1979
- DOI:
- Bibcode:
- 1979JCoPh..32..101V
- Keywords:
-
- Compressible Flow;
- Conservation Laws;
- Energy Dissipation;
- Euler-Lagrange Equation;
- Finite Difference Theory;
- Least Squares Method;
- Algorithms;
- Computer Programs;
- Error Analysis;
- Numerical Stability;
- One Dimensional Flow;
- Two Dimensional Flow;
- Fluid Mechanics and Heat Transfer